Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 346, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037039

RESUMO

In essence, the ß2 adrenergic receptor (ß2AR) plays an antiproliferative role by increasing the intracellular cyclic 3',5'-adenosine monophosphate (cAMP) concentration through Gαs coupling, but interestingly, ß2AR antagonists are able to effectively inhibit fibroblast-like synoviocytes (FLSs) proliferation, thus ameliorating experimental RA, indicating that the ß2AR signalling pathway is impaired in RA FLSs via unknown mechanisms. The local epinephrine (Epi) level was found to be much higher in inflammatory joints than in normal joints, and high-level stimulation with Epi or isoproterenol (ISO) directly promoted FLSs proliferation and migration due to impaired ß2AR signalling and cAMP production. By applying inhibitor of receptor internalization, and small interfering RNA (siRNA) of Gαs and Gαi, and by using fluorescence resonance energy transfer and coimmunoprecipitation assays, a switch in Gαs-Gαi coupling to ß2AR was observed in inflammatory FLSs as well as in FLSs with chronic ISO stimulation. This Gαi coupling was then revealed to be initiated by G protein coupled receptor kinase 2 (GRK2) but not ß-arrestin2 or protein kinase A-mediated phosphorylation of ß2AR. Inhibiting the activity of GRK2 with the novel GRK2 inhibitor paeoniflorin-6'-O-benzene sulfonate (CP-25), a derivative of paeoniflorin, or the accepted GRK2 inhibitor paroxetine effectively reversed the switch in Gαs-Gαi coupling to ß2AR during inflammation and restored the intracellular cAMP level in ISO-stimulated FLSs. As expected, CP-25 significantly inhibited the hyperplasia of FLSs in a collagen-induced arthritis (CIA) model (CIA FLSs) and normal FLSs stimulated with ISO and finally ameliorated CIA in rats. Together, our findings revealed the pathological changes in ß2AR signalling in CIA FLSs, determined the underlying mechanisms and identified the pharmacological target of the GRK2 inhibitor CP-25 in treating CIA. Video Abstract.


Assuntos
Artrite Experimental , Sinoviócitos , Animais , Ratos , Artrite Experimental/patologia , Proliferação de Células , Células Cultivadas , Epinefrina/metabolismo , Epinefrina/farmacologia , Epinefrina/uso terapêutico , Fibroblastos/metabolismo , Inflamação/metabolismo , Isoproterenol/metabolismo , Isoproterenol/farmacologia , Isoproterenol/uso terapêutico , Transdução de Sinais , Sinoviócitos/metabolismo , Sinoviócitos/patologia
2.
Ann Rheum Dis ; 82(2): 198-211, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36198439

RESUMO

OBJECTIVES: To uncover the function and underlying mechanism of an essential transcriptional factor, PU.1, in the development of rheumatoid arthritis (RA). METHODS: The expression and localisation of PU.1 and its potential target, FMS-like tyrosine kinase 3 (FLT3), in the synovium of patients with RA were determined by western blot and immunohistochemical (IHC) staining. UREΔ (with PU.1 knockdown) and FLT3-ITD (with FLT3 activation) mice were used to establish collagen antibody-induced arthritis (CAIA). For the in vitro study, the effects of PU.1 and FLT3 on primary macrophages and fibroblast-like synoviocytes (FLS) were investigated using siRNAs. Mechanistically, luciferase reporter assays, western blotting, FACS and IHC were conducted to show the direct regulation of PU.1 on the transcription of FLT3 in macrophages and FLS. Finally, a small molecular inhibitor of PU.1, DB2313, was used to further illustrate the therapeutic effects of DB2313 on arthritis using two in vivo models, CAIA and collagen-induced arthritis (CIA). RESULTS: The expression of PU.1 was induced in the synovium of patients with RA when compared with that in osteoarthritis patients and normal controls. FLT3 and p-FLT3 showed opposite expression patterns compared with PU.1 in RA. The CAIA model showed that PU.1 was an activator, whereas FLT3 was a repressor, of the development of arthritis in vivo. Moreover, results from in vitro assays were consistent with the in vivo results: PU.1 promoted hyperactivation and inflammatory status of macrophages and FLS, whereas FLT3 had the opposite effects. In addition, PU.1 inhibited the transcription of FLT3 by directly binding to its promoter region. The PU.1 inhibitor DB2313 clearly alleviated the effects on arthritis development in the CAIA and CIA models. CONCLUSIONS: These results support the role of PU.1 in RA and may have therapeutic implications by directly repressing FLT3. Therefore, targeting PU.1 might be a potential therapeutic approach for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proteínas Proto-Oncogênicas , Sinoviócitos , Transativadores , Animais , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fibroblastos/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Tirosina Quinase 3 Semelhante a fms/farmacologia , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
3.
Mol Ther Nucleic Acids ; 27: 733-750, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35317281

RESUMO

Rheumatoid arthritis (RA) is an inflammation-involved disorder and features the disruption of CD4+ T lymphocytes. Herein, we describe that microRNA-10b-5p (miR-10b) promotes RA progression by disrupting the balance between subsets of CD4+ T cells. MiR-10b-deficient mice protected against collagen antibody-induced arthritis (CAIA) model. RNA sequencing results indicated that disordered genes in miR-10b-/- CAIA model are closely associated with CD4+ T cells differentiation. Moreover, miR-10b mimics promoted Th1/Th17 and suppressed Th2/Treg cells differentiation, whereas miR-10b inhibitor induced contrary effects. In addition, GATA3 and PTEN was confirmed as two targets of miR-10b, and GATA3 siRNA could increase Th1 and reduce Th2 cells meanwhile PTEN siRNA could increase Th17 and decrease Treg cells. Furthermore, miR-10b inhibitor significantly ameliorated collagen-induced arthritis (CIA) development by attenuating the dysfunctional CD4+ T cell subpopulations. The present findings suggest that miR-10b could disrupt the balance of CD4+ T subsets, while suppressed miR-10b could attenuate the severity of experimental arthritis, which provided us a novel mechanistic and therapeutic insight into the RA.

5.
Oncogene ; 41(17): 2444-2457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35279703

RESUMO

Macrophage-mediated tumor cell phagocytosis and subsequent neoantigen presentation are critical for generating anti-tumor immunity. This study aimed to uncover the potential clinical value and molecular mechanisms of miRNA-22 (miR-22) in tumor cell phagocytosis via macrophages and more efficient T cell priming. We found that miR-22 expression was markedly downregulated in primary macrophages from glioma tissue samples compared to adjacent tissues. miR-22-overexpressing macrophages inhibited glioma cell proliferation and migration, respectively. miR-22 upregulation stimulated the phagocytic ability of macrophages, enhanced tumor cell phagocytosis, antigen presentation, and efficient T cell priming. Additionally, our data revealed that miR-22-overexpressing macrophages inhibited glioma formation in vivo, HDAC6 was a target, and NF-κB signaling was a pathway closely associated with miR-22 in tumor-associated macrophages (TAMs) of glioma. Our findings revealed the essential roles of miR-22 in tumor cell phagocytosis by macrophages and more efficient T cell priming, facilitating further research on phagocytic regulation to enhance the response to tumor immunotherapy.


Assuntos
Glioma , Macrófagos , MicroRNAs , Imunidade Adaptativa , Linhagem Celular Tumoral , Proliferação de Células , Glioma/imunologia , Glioma/patologia , Humanos , Imunidade Inata , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose
6.
Biomed Pharmacother ; 139: 111605, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33901872

RESUMO

Chimeric antigen receptor (CAR)-T cell therapy has been shown to be an effective treatment for hematological tumors, but the treatment of solid tumors still lacks effectiveness. In the tumor microenvironment, macrophages are the innate immune cells with the highest infiltration rate. Tumor-associated macrophages (TAMs) stimulate angiogenesis, increase tumor invasion, and mediate immunosuppression. Because macrophages can infiltrate solid tumor tissue and interact with almost all cellular components in the tumor microenvironment (including tumor cells, immune cells such as T-cells, NK cells, DCs, and other resident non-immune cells), researchers are trying to use macrophages modified with CAR (CAR-M) against solid tumors. This review describes recent reports of CAR-M-based tumor treatments and summarizes their shortcomings and future applications.


Assuntos
Imunoterapia , Macrófagos/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Humanos , Neoplasias/imunologia
7.
J Cancer ; 12(1): 224-231, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391419

RESUMO

Glioma is a malignant brain tumor with a generally poor prognosis. Dysregulation of a long non-coding RNA, GAS5, has been detected in numerous cancers, including glioma. Previous studies have suggested that GAS5 plays a significant functional role in glioma, affecting proliferation, metastasis, invasion, and apoptosis. In this review, we describe the roles and mechanisms of GAS5 in glioma. GAS5 may be a biomarker for diagnosis and prognosis, and even a potential target for glioma treatment, and therefore warrants further investigation.

8.
Cell Prolif ; 54(2): e12929, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33300633

RESUMO

Glioma is the most commonly observed primary intracranial tumour and is associated with massive angiogenesis. Glioma neovascularization provides nutrients for the growth and metabolism of tumour tissues, promotes tumour cell division and proliferation, and provides conditions ideal for the infiltration and migration of tumour cells to distant places. Growing evidence suggests that there is a correlation between the activation of nuclear factor (NF)-κB and the angiogenesis of glioma. In this review article, we highlighted the functions of NF-κB in the angiogenesis of glioma, showing that NF-κB activation plays a pivotal role in the growth and progression of glioma angiogenesis and is a rational therapeutic target for antiangiogenic strategies aimed at glioma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , NF-kappa B/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Caspases/metabolismo , Citocinas/metabolismo , Glioma/irrigação sanguínea , Glioma/metabolismo , Glioma/terapia , Humanos , MicroRNAs/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Neovascularização Patológica , Estresse Oxidativo
9.
J Cell Mol Med ; 24(17): 9518-9532, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686306

RESUMO

Osteoarthritis (OA), the most ubiquitous degenerative disease affecting the entire joint, is characterized by cartilage degradation and synovial inflammation. Although the pathogenesis of OA remains poorly understood, synovial inflammation is known to play an important role in OA development. However, studies on OA pathophysiology have focused more on cartilage degeneration and osteophytes, rather than on the inflamed and thickened synovium. Fibroblast-like synoviocytes (FLS) produce a series of pro-inflammatory regulators, such as inflammatory cytokines, nitric oxide (NO) and prostaglandin E2 (PGE2 ). These regulators are positively associated with the clinical symptoms of OA, such as inflammatory pain, joint swelling and disease development. A better understanding of the inflammatory immune response in OA-FLS could provide a novel approach to comprehensive treatment strategies for OA. Here, we have summarized recently published literatures referring to epigenetic modifications, activated signalling pathways and inflammation-associated factors that are involved in OA-FLS-mediated inflammation. In addition, the current related clinical trials and future perspectives were also summarized.


Assuntos
Fibroblastos/patologia , Osteoartrite/patologia , Sinoviócitos/patologia , Sinovite/patologia , Animais , Humanos , Inflamação/patologia , Transdução de Sinais/fisiologia
10.
Oncol Lett ; 20(1): 947-954, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32566024

RESUMO

Glioma is a type of malignant tumor arising from glial cells of the brain or the spine. Circulation-derived macrophage infiltration is a characteristic of the glioma microenvironment. The polarization status of circulation-derived macrophages in patients with glioma remains unclear. Therefore, the present study aimed to evaluate the polarization status of circulation-derived macrophages in patients with glioma. A total of 40 patients with glioma and 38 healthy volunteers were recruited. The polarization status of macrophage-like cells in the peripheral blood of patients with glioma was evaluated. In addition, the associations between the polarization status of macrophage-like cells and glioma stage or the expression levels of the glioma tumor marker chitinase-3-like protein 1 (also termed YKL-40) were evaluated. The number of macrophage-like cells (CD115+CD1c-CD2-CD15-CD19-CD14+CD16+CD11b+) was higher in the peripheral blood of patients with glioma compared with that of healthy volunteers. There were fewer M1 macrophage-like cells, and more M2 macrophage-like cells were induced in the peripheral blood of patients with glioma compared with healthy controls. Specifically, the number of M2a/M2b macrophage-like cells increased, whereas that of M2c macrophage-like cells decreased in the peripheral blood of patients with glioma compared with healthy controls. The polarization status of macrophage-like cells in patients with glioma was not significantly associated with glioma stage or with the glioma marker YKL-40. Overall, the results of the present study revealed that the polarization status of macrophage-like cells in the peripheral blood of patients with glioma was abnormal, offering potential novel diagnostic and therapeutic targets, such as different macrophage subsets, for glioma.

11.
Mediators Inflamm ; 2020: 1583647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351318

RESUMO

The ontogeny of macrophages in most organs has already been established. Owing to the limited number and inaccessibility of synovial macrophages (SMs), the origin of SMs has not been fully elucidated. Previous studies suggested that SMs have two major origins, namely, tissue-resident and monocyte-derived SMs. However, no systematic analysis to identify SM ontology in either physiological or pathological conditions has been available to date. In this review, we summarize relevant studies on the two main origins of SMs in rheumatoid arthritis (RA) and forecast the future research directions for this field. Furthermore, we discuss the current state of RA therapy that is based on targeting different SM subsets.


Assuntos
Artrite Reumatoide/etiologia , Macrófagos/fisiologia , Sinoviócitos/fisiologia , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Humanos , Macrófagos/efeitos dos fármacos
12.
Rheumatology (Oxford) ; 59(1): 46-56, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605483

RESUMO

RA is a chronic, autoimmune-mediated inflammatory pathology. Long non-coding RNAs (lncRNAs) are a novel group of non-coding RNAs with a length of >200 nucleotides. There are reports emerging that suggest that lncRNAs participate in establishing and sustaining autoimmune diseases, including RA. In this review article, we highlight the functions of lncRNAs in different cell types in RA. Our review indicates that lncRNAs affect various cellular components and are novel candidates that could constitute promising targets for the diagnosis and treatment of RA.


Assuntos
Artrite Reumatoide/genética , Fibroblastos/metabolismo , Leucócitos Mononucleares/metabolismo , RNA Longo não Codificante/fisiologia , Linfócitos T/metabolismo , Humanos , Líquido Sinovial/citologia
13.
J Cancer ; 10(26): 6738-6746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31777603

RESUMO

Tumor-associated macrophages (TAMs) are an important cellular component of the tumor microenvironment (TME) and play an essential role in tumor immunity. Recently, numerous studies have indicated that long non-coding RNAs (lncRNAs) can affect several functions of TAMs. In the present review, we summarize the versatile role of lncRNAs in the polarization, epigenetic modulation, and classic signaling pathways of TAMs, which represent a potential target for tumor diagnosis or treatment.

14.
Front Pharmacol ; 10: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804784

RESUMO

The plant extract "total glucosides of peony" (TGP) constitutes a mixture of glycosides that is isolated from the roots of the well-known traditional Chinese herb Paeonia lactiflora Pall. Paeoniflorin (Pae) is the most abundant component and the main biologically active ingredient of TGP. Pharmacologically, Pae exhibits powerful anti-inflammatory and immune regulatory effects in some animal models of autoimmune diseases including Rheumatoid Arthritis (RA) and Systemic Lupus Erythematosus (SLE). Recently, we modified Pae with an addition of benzene sulfonate to achieve better bioavailability and higher anti-inflammatory immune regulatory effects. This review summarizes the pharmacological activities of Pae and the novel anti-inflammatory and immunomodulatory agent Paeoniflorin-6'-O-benzenesulfonate (CP-25) in various chronic inflammatory and autoimmune disorders. The regulatory effects of Pae and CP-25 make them promising agents for other related diseases, which require extensive investigation in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA